deBruijn-like sequences and the irregular chromatic number of paths and cycles

نویسندگان

  • Michael Ferrara
  • Christine Lee
  • Phil Wallis
  • Ellen Gethner
چکیده

A deBruijn sequence of order k, or a k-deBruijn sequence, over an alphabet A is a sequence of length |A| in which the last element is considered adjacent to the first and every possible k-tuple from A appears exactly once as a string of k-consecutive elements in the sequence. We will say that a cyclic sequence is deBruijn-like if for some k, each of the consecutive k-element substrings is distinct. A vertex coloring χ : V (G) → [k] of a graph G is said to be proper if no pair of adjacent vertices inG receive the same color. Let C(v; χ) denote the multiset of colors assigned by a coloring χ to the neighbors of vertex v. A proper coloring χ of G is irregular if χ(u) = χ(v) implies that C(u;χ) 6= C(v; χ). The minimum number of colors needed to irregularly color G is called the irregular chromatic number of G. The notion of the irregular chromatic number pairs nicely with other parameters aimed at distinguishing the vertices of a graph. In this paper, we demonstrate a connection between the irregular chromatic number of cycles and the existence of certain deBruijn-like sequences. We then determine exactly the irregular chromatic number of Cn and Pn for n ≥ 3, thus verifying two conjectures given by Okamoto, Radcliffe and Zhang.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incidence dominating numbers of graphs

In this paper, the concept of incidence domination number of graphs  is introduced and the incidence dominating set and  the incidence domination number  of some particular graphs such as  paths, cycles, wheels, complete graphs and stars are studied.

متن کامل

The locating chromatic number of the join of graphs

‎Let $f$ be a proper $k$-coloring of a connected graph $G$ and‎ ‎$Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into‎ ‎the resulting color classes‎. ‎For a vertex $v$ of $G$‎, ‎the color‎ ‎code of $v$ with respect to $Pi$ is defined to be the ordered‎ ‎$k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$‎, ‎where $d(v,V_i)=min{d(v,x):~xin V_i}‎, ‎1leq ileq k$‎. ‎If‎ ‎distinct...

متن کامل

On the outer independent 2-rainbow domination number of Cartesian products of paths and cycles

‎Let G be a graph‎. ‎A 2-rainbow dominating function (or‎ 2-RDF) of G is a function f from V(G)‎ ‎to the set of all subsets of the set {1,2}‎ ‎such that for a vertex v ∈ V (G) with f(v) = ∅, ‎the‎‎condition $bigcup_{uin N_{G}(v)}f(u)={1,2}$ is fulfilled‎, wher NG(v)  is the open neighborhood‎‎of v‎. ‎The weight of 2-RDF f of G is the value‎‎$omega (f):=sum _{vin V(G)}|f(v)|$‎. ‎The 2-rainbow‎‎d...

متن کامل

Fault-Tolerance Properties of deBruijn and Shuffle-Exchange Networks

W e study node fault-tolerance propert ies of the dary deBruij’n and shufle-exchange networks by appealing t o the algebraic structure of their underlying digraphs. In particular, we prove that both of these families of digraphs have connectivity equal t o their minimum degree. T h i s result is new in the case of the shuffle-exchange digraphs and can be extended f o r both famil ies t o charac...

متن کامل

On Generalized Coprime Graphs

Paul Erdos defined the concept of coprime graph and studied about cycles in coprime graphs. In this paper this concept is generalized and a new graph called Generalized coprime graph is introduced. Having observed certain basic properties of the new graph it is proved that the chromatic number and the clique number of some generalized coprime graphs are equal.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 309  شماره 

صفحات  -

تاریخ انتشار 2009